当前位置:首页> 技术装备

微地震检测:页岩气开发明星技术

时间:2013-09-30 10:20 来源:

 随着我国页岩油气开发技术的不断突破,未来5~10年必将形成一定的油气开发规模。微地震压裂检测技术作为一项重要的非常规油气藏勘探新技术,全面了解和掌握其技术特点、技术关键、应用方法、技术实用性及其发展方向,必将对我国页岩油气藏勘探开发起到重要的推进作用。

微地震检测技术及应用方法

作为2010年世界十大石油科学技术进展之一的微地震检测技术,最早于20世纪80年代提出,90年代逐渐开始在其它行业应用。2006年,威德福公司推出FracMap微地震压裂检测技术,首次在油气勘探领域实现商业化应用。微地震检测技术在油气藏勘探开发方面的主要应用包括储层压裂监测、油藏动态监测等,可缩短和降低储层监测的周期与费用。

目前CGGVeritas、斯伦贝谢、贝克休斯、道达尔、哈里伯顿等多家公司推出微地震技术服务。道达尔公司在中东和南美分别进行了注蒸汽微地震监测研究。一些技术服务公司在该领域取得重大进展,在优化开发方案、提高采收率等方面起到关键作用。微地震技术服务公司研发出一套基于地表的微震数据采集观测系统,其专有的FracStar®技术在非常规资源开采中发挥重要作用。微地震技术在页岩气储集层中进行实时压裂监测效果显著,贝克休斯公司采用IntelliFrac服务解决了页岩气储层水力压裂实时监测难题。

目前微地震监测技术已经成为地球物理界的热门技术之一,是储层压裂过程中最精确、最及时、信息最丰富的监测手段。随着对微地震震源机制、反演及可视化的深入研究,微地震技术将不断扩大应用范围,发展前景将更加广阔。 

微地震检测技术的基本应用方法是:通过在井中或地面布置检波器,排列接收生产活动所产生或诱导的微小地震事件,并通过对这些事件的反演求取微地震源位置等参数,最后通过这些参数对生产活动进行监控和指导。

目前该应用方法主要用于油田低渗透储层压裂的裂逢动态成像,或油田勘探开发过程中的动态监测,主要是流体驱动监测。随着该项检测技术的日益成熟,实时微地震成像可以及时指导压裂工程,适时调整压裂参数;对压裂范围、裂缝发育方向和大小进行追踪定位,客观评价压裂工程的效果,对油气田下一步生产开发提供有效的指导。

微地震检测技术特点

微地震是一种小型的地震。在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件。开采坑道周围的总的应力状态是开采引起的附加应力和岩体内的环境应力的总和。

    矿山微地震检测技术共分为三类:第一类是矿井地震检测系统,用于监测矿震,特点是监测大震级破裂事件,定位精度500米左右,主要采用地震行业的技术和设备;第二类是分布式微地震监测系统,用于监测小型矿震,特点是可监测小震级破裂事件,定位精度50~100米左右。一般适合采区尺度的震动监测。第三类是高精度微地震检测系统,用于监测小震级冲击地压和岩层破裂,定位精度达到10米以内,适合采掘工程尺度。

岩爆是岩石猛烈的破裂,造成开采坑道的破坏,只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、岩爆。对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。

国内技术应用现状

基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。

2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。截止2011年11月,东方物探公司已成功对11口钻井实施了压裂微地震监测。

同年,华北油田物探公司针对鄂尔多斯工区大力推广水平井分段压裂技术、不断提高储量动用率及单井产量的要求,2011年年初就对微地震检测技术发展状况进行调研,并对检波器、记录仪器、处理软件进行实际考察。他们与科研院校合作,在鄂南工区富县牛东4井与洛河4井开展微地震监测裂缝评价技术攻关,采用微地震技术对储层压裂进行监测,结果与人工电位梯度方法(ERT)监测结果一致。该公司还通过组建微地震监测项目组,加强相关专业知识的培训和学习,并与科研院校“高位嫁接”,开发微地震检测特色技术,打造差异化竞争优势。

近年来,胜利油田积极开展微地震压裂检测技术应用研究,并把它作为油气勘探开发的重要技术手段和技术储备。据了解,“十二五”期间,非常规油气藏将成为胜利油田的一个重要接替阵地,而微地震压裂检测技术是非常规油气藏勘探领域中的一项重要新技术。通过开展对国内外微地震压裂检测技术现状、微地震压裂检测采集方法、数据处理及裂缝预测方法、目前成熟的处理反演软件、微地震压裂检测技术应用实例分析等方面调查研究,全面了解和掌握微地震压裂检测技术的技术特点、技术关键、技术实用性及其发展方向,为胜利油田下一步开展非常规油气资源的勘探开发工作提供先进的技术支持,更好地为油气藏勘探开发工作服务。

国外技术研究与应用

在20世纪40年代,美国矿业局就开始提出应用微地震法来探测给地下矿井造成严重危害的冲击地压,但由于所需仪器价格昂贵且精度不高、监测结果不明显而未能引起人们的足够重视和推广。近10年来,地球物理学的进展,特别是数字化地震监测技术的应用,为小范围内的、信号较微弱的微地震研究提供了必要的技术基础。为了验证和开发微地震监测技术在地下岩石工程(如地热水压致裂、水库大坝、石油、核废料处理等)中所具有的巨大潜力,国外一些公司的研究机构和大学联合,进行了一些重大工程应用实验。如1997年,在美国德州东部的棉花谷进行了一次全面而深入的水压致裂微地震成像现场实验,以验证微地震成像技术的实用价值。该实验取得了巨大成功,证明微地震成像技术相对于其它技术来讲,分辨率高、覆盖范围广、经济实用及可操作性强,很有发展潜力。美国之所以成为目前世界上页岩油气开发的领跑者,就是因为它已经熟练掌握了利用地面、井下测斜仪与微地震检测技术相结合先进的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化。该技术有以下优点:一是测量快速,方便现场应用;二是实时确定微地震事件的位置;三是确定裂缝的高度、长度、倾角及方位;四是具有噪音过滤能力。

在英国,P.Young教授领导的KEELE大学应用地震实验室,主要从事岩石力学方面的微地震基础应用研究,主要分为3个方向:震源力学、微地震成像及岩石力学。其主要研究目的是:揭示岩石在外界条件(如承载、温度、渗流压力等)变化时裂纹初始结晶、凝聚接合及其扩展的机理,研究岩石宏观损伤、破裂的监测技术。位于加拿大金斯敦的工程地震组织的主要成员是出自P.Young教授的门下,该组织主要进行工程实际现场应用研究,研究方向为岩石地下工程微地震系统的构建、微地震信号采集、处理及分析,编制的软件可以实时进行微地震事件定位。

在澳大利亚,随着经验的积累和技术手段的提高,初步证明微地震可在现场附近进行观测,并能对其进行比较精确的定量研究。微地震研究取得的良好效果,为采矿工作提供了大量有益信息,极大地激发了矿业公司投资进行此类监测及研究的积极性,到目前为止,澳大利亚联邦科学与工业研究院CISRO已完成15个矿的微震监测试验,积累了大量的现场经验,为微地震监测工作的广泛开展和进一步研究打下了良好基础。以姜福兴教授为首的矿山微地震研究团队在吸取国际上微地震监测成果的基础上,针对矿山的不同灾害,研制了系列微地震检测仪器、传感器和软件,已经形成了灾害监测、评价和治理的成套技术和装备,并在多个矿山取得了成功应用。研究团队由采矿工程、仪器仪表、地球物理、安全工程、软件工程等专业的博士、教授和研究生组成。通过承担大量国家和企业的科研项目,在理论、技术和装备一体化方面,取得了多项国际领先水平的成果,为企业解决了很多安全难题。目前推出的微地震检测成套技术和装备,是在这些重要项目的基础上开发的。

在南非,于1939年设计并布设了五个机械式地震仪,在地面组成台阵,主要为矿震定位。虽然自矿区开采以来地震活动性和采矿的关系已经看得非常清楚,但是,是Gane等人在Witwatersrand地区第一次描述了深部金矿开采和地震活动的直接关系。

在加拿大,国家原子能公司为监测深部开挖引发的大应力集中,防止其造成危害,采用了微地震监测技术,定量评定损伤程度,并监测所存放在地下的放射性核燃料扩散到周围地下水中的可能途径,以防造成污染。该研究机构为了保证置放核燃料的地下结构的稳定性,在-420m水平开挖了一条直径3.5m、长46m的实验隧道,进行专门研究,称为地下实验室URL。其开挖围岩主要是低渗透性硬岩,研究的主要课题是地下坚硬围岩开挖引发的柱状隧道损伤。在传统的应力、应变监测的同时,进行了详细的微地震监测,使用了分布在开挖体周围的16个三分向加速度计,在一年的时间内记录并定位了大约10000个微地震事件。这是一项耗资巨大的科研工程,围绕这一项目得出了许多有价值的科研成果。重点内容是微震事件分布、能级、机理及其与岩石变形的关系,依据现场实测结果来建立和分析数学模型。

战略合作
战略合作 全球石油化工网 世伟洛克 北京石油展 API 斯伦贝谢